Required Practical Review

Chemistry - Separate Only - Titration

Free Science video: <u>https://www.youtube.com/watch?v=saRBT5oZfh8</u> GCSE Pod Video: <u>https://members.gcsepod.com/shared/podcasts/title/11591</u>

Know it

- 1. Use the pipette and pipette filler to add 25 cm^3 of alkali to a clean conical flask.
- 2. Add a few drops of *indicator* and put the conical flask on a white tile (so you can see the colour of the indicator more easily).
- 3. Fill the *burette* with acid and note the starting volume.
- 4. Slowly add the acid from the burette to the alkali in the conical flask, swirling to mix.
- 5. Stop adding the acid when the end-point is reached (the appropriate colour change in the indicator happens). Note the final volume reading.
- 6. Repeat steps 1 to 5 until you get concordant results

Concordant results: Results within 0.1cm³ of each other

Review it

Complete the tasks below into your book.

Up to grade 4

- Draw a table to show how you would record your results.
- How would you tell if a result was anomalous?
- What should you do with anomalous data?

Grade 5-7

- Identify the possible sources of error in the practical
- Why is it better to repeat the experiment and calculate a mean than just do the experiment once?
- Describe how you could reduce or remove the source of error if you were to repeat the practical.

Grade 7+

- Explain why it is important to fill the space below the tap in the burette with Solution A before beginning an accurate titration.
- Explain how (i) the titre and (ii) the value calculated for the concentration of the acid will be affected if you do not fill the space below the tap

Test it

Answer the exam questions below into your book.

Q1.

Sodium hydroxide neutralises sulfuric acid.

The equation for the reaction is:

 $2NaOH + H_2SO_4 \ \rightarrow \ Na_2SO_4 + 2H_2O$

(a) Sulfuric acid is a strong acid.

What is meant by a strong acid?

- (b) Write the ionic equation for this neutralisation reaction. Include state symbols.
- (c) A student used a pipette to add 25.0 cm³ of sodium hydroxide of unknown concentration to a conical flask.

The student carried out a titration to find out the volume of $0.100 \text{ mol} / \text{dm}^3$ sulfuric acid needed to neutralise the sodium hydroxide.

Describe how the student would complete the titration.

You should name a suitable indicator and give the colour change that would be seen.

(2)

(2)

(d) The student carried out five titrations. Her results are shown in the table below.

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of 0.100 mol / dm ³ sulfuric acid in cm ³	27.40	28.15	27.05	27.15	27.15

Concordant results are within 0.10 cm³ of each other.

Use the student's concordant results to work out the mean volume of 0.100 mol / dm^3 sulfuric acid added.

Mean volume = _____ cm³

(e) The equation for the reaction is:

 $2NaOH + H_2SO_4 \ \rightarrow \ Na_2SO_4 + 2H_2O$

Calculate the concentration of the sodium hydroxide.

Give your answer to three significant figures.

Concentration = _____ mol / dm³

(f) The student did another experiment using 20 cm³ of sodium hydroxide solution with a concentration of 0.18 mol / dm³.

Relative formula mass (M_r) of NaOH = 40

Calculate the mass of sodium hydroxide in 20 cm³ of this solution.

Mass = _____ g

(2) (Total 16 marks)

(2)

(4)

Q2.

In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

A student has to check if two samples of hydrochloric acid, **A** and **B**, are the same concentration.

Describe how the student could use the apparatus and the solutions in the diagram below to carry out titrations.

(Total 6 marks)

Mark it

Q1.				
(a)	(sulfuric acid is) completely / fully ionised			
	In aqueous solution or when dissolved in water	1		
(b)	H⁺(aq) + OH⁻(aq) → H₂O(I) allow multiples 1 mark for equation 1 mark for state symbols	2		
(c)	adds indicator, eg phenolpthalein / methyl orange / litmus added to the sodium hydroxide (in the conical flask) <i>do not accept universal indicator</i>	1		
	(adds the acid from a) burette	1		
	with swirling or dropwise towards the end point or until the indicator just changes colour	1		
	until the indicator changes from pink to colourless (for phenolphthalein) or yellow to red (for methyl orange) or blue to red (for litmus)	1		
(d)	titrations 3, 4 and 5 or $\frac{27.05 + 27.15 + 27.15}{3}$	1		
	27.12 cm ³			
	accept 27.12 with no working shown for 2 marks allow 27.1166 with no working shown for 2 marks	1		
(e)	Moles H_2SO_4 = conc × vol = 0.00271 allow ecf from 8.4	1		
	Ratio H ₂ SO ₄ :NaOH is 1:2	1		
	Moles NaOH = Moles $H_2SO_4 \times 2 = 0.00542$	1		
	Concentration NaOH = mol / vol = 0.00542 / 0.025 = 0.2168	1		
	0.217 (mol / dm³) accept 0.217 with no working for 4 marks	1		
	accept 0.2168 with no working for 3 marks			

(f)

1000 × 0.18 = no of moles

or

20

0.15 × 40 g

0.144 (g)

accept 0.144g with no working for 2 marks

[16]

1

1

Q2.

Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also apply a 'best-fit' approach to the marking.

Level 3 (5 – 6 marks)

There is a description of titrations that would allow a comparison to be made between the two solutions of hydrochloric acid.

Level 2 (3 – 4 marks)

There is a description of an experimental method including addition of acid to alkali which may include an indicator or colour change and may include a measurement of volume.

Level 1 (1 – 2 marks)

There is a simple description of using some of the apparatus.

0 marks

No relevant content.

examples of chemistry points made in the response could include:

- acid in burette **or** flask
- alkali/sodium hydroxide or acid in burette or flask
- volume of acid or alkali measured using the pipette
- indicator in flask
- white tile under the flask
- slow addition
- swirling/mixing
- colour change of indicator
- burette volume measured